
FINAL TECHNICAL REPORT:

Award Number G13AP00020

The Mechanics of Episodic Tremor and Slip with Implications for

Seismic Hazards in Cascadia

November 11, 2014

Paul Segall
(650-723-7241, segall@stanford.edu)

Geophysics Department
Stanford University

Stanford, CA 94305-2215

Award Dates: 04/01/2013 – 3/31/2014

Abstract
We continue development of physical models of slow slip events, with a focus on under-

standing the implications for seismic hazards in the Pacific Northwest. In previous reports we
described physics based models of slow slip events (SSE) resulting from dilatant strengthen-
ing, 2D numerical simulations that showed how SSE could potentially evolve into damaging
dynamic ruptures, compared dilatant strenghting models to those involving a change from
rate-weakening to rate-strengthening friction, and analyzed geodetic data (GPS, leveling, and
tide-gauge) to constrain the spatial distribution of fault locking and to compare with predictions
of the physics-based models.

Previous physics-based models have been restricted to 2D numerical simulations. In this
report we focus on work done to accelerate 3D numerical simulations of fault behavior. We
completed development of Hierarchical-matrix (H-matrix) compression software library hmmvp,
that allows computation of Boundary Element calculations in O(n log n) time, rather than
O(n2) time for uncompressed matrix vector products. We also developed a method we call IGA
that allows for modeling with non-uniform meshes without sacrificing accuracy. Non-uniform
meshes are highly desirable when either fault properties or background normal stresses are
spatially variable, such that critical frictional length scales are spatially variable. To illustrate
the benefits of our methods, we consider a 3D simulation of a slow-slip event that grows into
a (quasi-) dynamic rupture. The nonuniform mesh has 1.2 million elements; the corresponding
uniform mesh would have 16.8 million, or 14.5× more than the non-uniform mesh. The H-
matrix for the nonuniform mesh at error tolerance ε = 10−5 is 6.6 GB (single-precision). The
H-matrix for the uniform mesh would be 95.6 GB. The full BEM matrix for the nonuniform
mesh would require 4.9 TB (terabyte) and the uniform mesh 1.0 PB (petabyte). In summary,
the combination of IGA and H-matrix compression allows well resolved problems to be run
on standard desktop computers. A paper describing the methods has now been published in
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Bradley [2014], and the software is open source and available at https://pangea.stanford.

edu/research/CDFM/software/index.html.

1 Report

Simulation of ETS events involves combining the equations of elasticity with appropriate fault
constitutive laws. Slip rate is determined by friction and tractions acting on faults. Each fault
is discretized into N elements. Each component of slip s(i) and traction τ (j) is related by a
matrix-vector product (MVP). In previous reports we have described H-matrix compression
methods that allow the MVP to be computed in O(NlogN) operations, as opposed to O(N2)
for conventional MVP.

The number of fault elements, N is determined by the need to resolve the smallest relevant
spatial scales. In fault simulations Gdc/b(σ−p∞), controls the shape of the rupture front. Here
G, (σ−p∞) are shear modulus and effective stress, dc, b from friction law. For laboratory values
of dc, N

2 can become prohibitively large. For most problems of interest frictional properties
vary spatially (e.g., transition from velocity-strengthening to weakening friction, ‘asperities’
with different a− b, or (σ − p∞), low frequency earthquake sources, etc). These considerations
argue strongly for a non-uniform fault mesh.

As shown below, constant-slip elements (CSE) generate intolerable errors on a nonuniform
mesh. We have developed a method we call IGA (interpolate, multiply by the Green’s function
array, average) that greatly suppresses these artifacts. It is implemented in the library dc3dm.
The user specifies a resolution function fr(x, y) that maps fault location (x, y) to desired element
size. For example, fr(x, y) ∝ dc(x, y)/b(x, y)σ(x, y). dc3dm generates a nonuniform mesh,
computes the H-matrix approximation to the array of Green’s functions G, and provides an
interface to the MVP with G.
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Figure 1: Error and fix to dc3d [Okada, 1992]. Non-uniform mesh with skinny strips aligned with the
rectangle’s sides are indicated by dashed lines with width 0.02 units. The area outside the rectangle
and strips is ∼ 300 units. Dip, strike, and opening dislocation are all one unit. a) original Okada [1992]
code, b) applying the symmetry fix, and c) relative difference between (a) and (b).

We use the Fortran code dc3.f [Okada, 1992] to compute Green’s functions for constant-slip
rectangular dislocations in an elastic half-space. We first addressed a numerical error in dc3d

that negatively impacted our high-resolution BEM applications. Fig. 1(a) shows log10 |∂yuz|,
in the plane of, and due to, the 2-unit rectangular source outlined by the solid black rectangle.
The mesh is highly nonuniform to emphasize the problem. There are 4 cones (out of possible 8)
of numerical error; each emerges from an edge of the rectangular dislocation. The cause of the
error is numerical cancellation in expressions of the form R+y for y = η < 0 or y = ξ < 0, where
R = (ξ2 +η2 +q2)1/2 and ξ, η, q are local coordinate directions (notation of Okada [1992]). The
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solution is to use the symmetry of the problem to reflect the source-receiver geometry across
the q-ξ and q-η planes so that the transformed receiver is in the ξ, η > 0 quadrant, where the
cancellation error does not occur. Then reflect the transformed solution back to the original
space. The result is shown in Fig. 1(b), and the point-wise relative differences between (a) and
(b) in Fig. 1(c). This fix is particularly important for dc3dm because the nonuniform mesh aligns
large rectangle centers with small rectangle edges, the situation in which error is greatest. We
distribute a corrected version of dc3.f (dc3omp.f) with disloc3d (including OpenMP version)
on our group webpage.

Mathematics of IGA. The standard constant-slip elements (CSE) method collocates slip
and traction at element centers. We refer to the associated array of Green’s functions as GCSE.
Constant-slip elements cause error where two adjacent elements have different sizes because of
the singularity at the element edges. (On a uniform mesh the singularities cancel each other.)
The solution is to increase the order of the approximation. We choose a nonuniform mesh with
the tiling property that the smallest element divides every other element in the mesh. Associate
with this mesh a uniform mesh whose element size is the smallest in the nonuniform mesh. We
call the small elements that tile a large element in the nonuniform mesh subelements and the
large element the superelement. Let In→u interpolate a quantity on the nonuniform (n) mesh to
the uniform (u) one. Define Gu as the array of Green’s functions for the uniform mesh; we use
subscript u and n throughout. Finally, let Au→n be the linear operator that averages quantities
defined on subelements to the superelements. The IGA method defines GIGA ≡ Au→nGuIn→u.
Then τu = Gusu and τn = GIGAsn = Au→nGuIn→usn.
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Figure 2: Matrix-vector product test of IGA. In each of the two examples shown: a) and b) are test
slip functions on uniform and non-uniform meshes, respectively. c) scaled absolute difference. d) – f)
show the tractions on the uniform mesh, the naive approach to the non-uniform mesh, and computed
according to IGA, respectively. h) and i) show the error in the naive approach and with IGA at the
same color scale. See text for details.

Note that the operator In→u is not trivial to define. The first step to is to discretize the
rectangular domain D, by dividing into nD subdomains, square to within a tolerance (1.1 is
good). Then each square is refined according to fr using an adaptive quadtree. This yields
nearly square elements and quadtree mesh (QTM) that matches the resolution function. Inter-
polation is based on triangulation of the QTM element centers; details are omitted for brevity.
Periodic, velocity, and free-surface boundary conditions are allowed.

So far we have described In→u, which is associated with Gu. In practice we do not use Gu, for
the size of Gu grows with the smallest element in the nonuniform mesh. Instead, approximate
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IGA (AIGA) associates a neighborhood with each receiver element. Associated with each
neighborhood is a smallest element – the largest subelement that tiles the superelements in
the neighborhood. This is the crucial aspect of AIGA that makes computations associated
with it globally independent of the smallest element size in the nonuniform mesh. There is an
operator Ii associated with each neighborhood, where i indexes the subelement sizes. (There are
generally on the order of 1 to 10 subelement sizes, which of course is far fewer than the number
of elements N .) Mathematically, the elements of GAIGA are formed by obtaining elements from
a family of IGA arrays Gi

IGA ≡ Aui→nGuiIn→ui according to the neighborhoods. We omit a
description of the rules to define a neighborhood.

Building the QTM and the associated interpolant take a few tens of seconds for N ∼ 106

elements. Moreover, computing time scales linearly in N . Thus, all mesh preprocessing is a
negligible part of constructing GAIGA. H-matrix construction scales approximately linearly in
N . Profiling shows that about 90% of CPU time spent in providing data to hmmvp’s compression
program is spent in the Green’s function routine, roughly independent of mesh. Hence all
bookkeeping operations associated with the QTM and A and I operators are also essentially
negligible.
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Figure 3: Convergence tests of IGA. (a) 3D with linear interpolation in IGA. (b) 2D with linear and
cubic interpolation in IGA.

Fig. 2(a,b) show matrix-vector product tests (τ = Gs) with smooth test functions s for two
different nonuniform meshes for the same domain D. D has periodic boundary conditions on
the west and east sides, a velocity boundary condition on the south, and a free surface boundary
condition on the north. Each figure has nine subplots: (a) is su, the test function on the uniform
mesh. (b) is sn, the test function on the nonuniform mesh. (c) shows the absolute difference
between the two, scaled by 200. (d) shows AGusu, which is τu projected (by averaging within
super elements) onto the nonuniform mesh. (e) is GCSEsn, the shear stress calculated by the
standard CSE method. (f) is GIGAsn, the solution calculated by IGA. (d)–(f) are on the same
color scale. (g) shows mesh element sizes. There are four element sizes, with areas relative to
the smallest element of 1, 4, 16, 64. (h) and (i) are on the same color scale and show error
in the CSE and IGA solutions. The key observation is that the CSE method has spikes in its
error field at the interfaces of different element sizes, while the IGA solution does not.

We verify IGA and dc3dm by comparing with fine uniform-mesh solutions. Fig. 3(a) shows
convergence tests based on test functions and meshes like those in Fig. 2(b). Solutions are com-
pared with that on the finest uniform mesh. IGA (red) achieves almost the same convergence
rate as the uniform-mesh method (black), while the CSE method’s (blue) convergence rate is
greatly slowed by errors at the element-size transitions. Please note that the convergence rate
is the slope of the curves shown in Fig. 3. We believe higher-order interpolation will give IGA

4



the same convergence as the uniform-mesh. We tested this in 2D (1D fault) as in Fig. 3(b).
When cubic, rather than linear, interpolation is used, IGA’s convergence rate matches that of
the uniform-mesh.
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Figure 4: log10 slip speed. Numbers with + prefix indicate elapsed time since the previous image. Time
progresses down the columns. Average slip speed vs time is plotted for reference. Properties are shown
at the top. Red dashed box shows zoomed-in portion.

We present a preliminary 3D (2D fault) simulation that illustrates the temporal relationship
between the ultimate SSE and a dynamic rupture (Fig. 4). Properties are shown at the top of
(a). For meshing reasons, we artificially diminished σ̄ at shallower depth, but will eliminate this
in the future. In Fig. 4(a) the ultimate SSE nucleates in the right corner and propagates left.
Midway across, an earthquake nucleates at the σ̄ transition. Fig. 4(b) zooms in on the nucleating
earthquake. Note first that the SSE triggers the dynamic event, as in the 2D simulations of
Segall and Bradley [2012]. Second, the DE first propagates along strike in the reverse direction
of the SSE. (The end of the DE has not been simulated yet.) We note that the dynamic event
does not rupture updip beyond the dc transition, which was used to limit the size of the mesh,
indicating more work needs to be done.

To illustrate the impact of hmmvp and dc3dm consider that the nonuniform mesh has 1.2
million elements; the corresponding uniform mesh would have 16.8 million, or 14.5 times more.
The H-matrix for the nonuniform mesh at error tolerance ε = 10−5 is 6.6 GB (single-precision).
This fits comfortably in the main memory of a modest off-the-shelf computer. The H-matrix
for the uniform mesh would be 95.6 GB. A uniform mesh allows one to exploit the FFT along
strike; this would require 128.0 GB storage. The full BEM matrix for the nonuniform mesh
would require 4.9 TB (terabyte) and the uniform mesh 1.0 PB (petabyte). The two numbers
of greatest interest are those for the uniform-mesh FFT implementation (128.0 GB) and our
implementation (6.6 GB). The factor 19.4 difference in memory and also roughly in MVP
time means a single modest shared-memory computer can handle this problem, as opposed to
requiring a computer cluster.
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